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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
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COMPARISONS OF_METHODB OF COMPUTING BENDING
MOMENTS IN HELICOPTER ROTCR EBLADES IN THE
PLANE OF FLAPPING
By John E. Duberg and Arthur ‘-R. Luecker

SUMMARY

Several methods of computing bending moments 1in
hellcopter rotor blades in the plane of flapplng are
reviewed, and the results of & numerical example analyzed
by four different methods are comparsd. The effect on
computed bending moments of the tlp-loss correction
Introduced by Wheetley 1s also consldered.

The comperlison indlcates that, from the standpolnt
of accuracy of results end esse of applicatlion, the
method provosed by Clerva 1s the most sultable for routine
analyses, The tip-loss correction 1s shown to have a
substantial effect on computed bending moments.

INTRODUCTION

The determinetion of the bending stresses 1n rotor
blades durlng flight 1s one of the Ilmportant problems in
the stress analysls of the structure of the hellcopter.
The problem 1s complicated by the fact that the alr loads
and the lnertla loads are continuously changing as the
blades rotate ané that the bending deflection of the
blades has an important effect on the moments developed
therein. The analysls can be simplified 1f the blades
are assumed rigid and therefore unable to bend, but under
this assumption the computed bendlng stresses superimposed
on the centrifugal-tension stresses are relatively high.
A more exact analysis, 1n which the rellieving effects of
centrifugal tenslon on blade bending are included, glves
much lower values for these calculated bending stresses.

In the present paper comparisons are made between
the varlous methods that hsve been proposed for the
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calculation of the bending stresses in the plane of
flepping. The effeet of introducing a correction for
tip loss, which has heretofore been ignored in stress
analyses, 1s also consldered. A numerical example 1s
analyzed by esch of the several methods to provide a
concrete basls for the comparisons.

THEORY AND BASIC ASSUMPTIONS OF METHODS OF ANALYSIS

The basic rotor theory on which stress analyses of
rotor blades are based is that of Glauert, Lock, and
Wheatley. (See references 1, 2, and 3, respectively.)
A conslderation of the forces acting on the rotor blade
during steady forward flight, as glven by this theory,
indlcates that the total bending moment at eny radial
stetion may be resolved into the following three components:

(1) A component that 1s 1dentical with the bending
moment 1n a rigld blade and 1s therefore
Independent of blade bending

(2) A component, due to axlal tenslion, that depends
on the blade deflection and therefore varles
as the blade bends

(3) A component due to the lnertia forces assoclated
wlith the varlatlon of the deflection with tlme

In the simplified theories, in which the blade ls assumed
static and rigid, the second and third components do not
occur, %hen flexlbllity 1s taken into account so that

the sscond component 1s included, the problem 1s compli-
cated because of the lnteractlon between the moments and
the blede deflecticns. If the third component 1s 1lncluded,
the problem 1s further complicated because the elastic
curve must satlisfy dynamlic as well as statlec conditions.

METHODS COF ANALYSIS

The methods of analysls for rotor-blade bending
moments in the.-plane of flapping that are avallable in
the literature fall 1nto three categorles as follows:

(1) "Exact" analyses in which inertia forces due to
rate of change of blade deflectlions, as well
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as the 1nteraction between blade deflections
and moments, are considered
(2) Analyses, based on static loadings, that include
Interaction between blade bending and moments
but neglect lnertla forces due to blade-
bending deflections

-

(3) Simplified analyses in which the bending moments
for the rlgld blade are computed and approxi-
mate correctlons to account for the reduction
in the bending moment due to the axial load
are aspplled; the reduction due to the axlal
loag has sometimes been called centrifugsl
relief

The analysis gilven in reference L 1s belileved to be
the only publlshed exact analysls and is based on the
rotor theory of references 1, 2, and 5. Thilis theory has
been refined and extcnded 1n roference 3, In appendix A
of the present pener, one of these refinements -~ allowance
for the reductlorn in 11ft near the blade tlo - 1s intro-
duced Into the analysls of blade bending.

Most of the solutlons that have been presented in the
literature fell 1nto the second category, 1in which the
problem treated 1s purely a static one. Thls approach
reduces the problem to that of a beam under combined
bending and tension and, therefore, the methods developed
for such problems can be appllied to the analysls of rotor-
blade moments. 1In reference 6, & solution of this class,
which mekes use of "type" solutlons to facllitate the
numerical calculatlons, 1s given as a simplification of
the snslysis of reference lj. Two other methods of solving
the static problem are given in references 7 and 8. 1In
reference 7 the solution 1s effected by means of the theo-
rem of thres moments generalized to 1nclude the effect of
centrifugal tension. In reforence 8 the solution 1s
obtained by finding a deflected shape for the blade that
1s consistent wlith & minlmum of potential energy for the
system.,

The methods of the third category, which should have
more appeal for use in prsctical applications, provide
simplified formulas for obtalning the bending moments in
the blade by correcting the rigld-blade bending moments
for the relief caused by centrifugal tension. Clerva has
proposed & formula, given in reference 6, which states
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that the moment developed in the actual rotor blade 1is
equal to the product of the rigid-blade bending moment

and the perfectly flexible blade bending moment divided
by the sum of these two moments. The perfectly flexible
blade bending moment 1s a flctitlous bending moment
obtalned by multiplying the stiffness of the actual blade
by the curvature of the perfectly flexlble blade. The
solutions for the rigld-blade bending moment and the
flexible-blade bending moment are given in appendix B.
Hohenemser in reference 9 has developed a method of com-
puting the blade bending moment by multiplying the rigild-
blade moment by a correctlon fasctor, given herein in
appendix B, that depends on the blade radlius, blade
stiffness, and centrifugal force at the root. The formula
1s developed on the basis of uniform distribution along
the length of the blade of both the blade mass and blade
bending stiffness, Reference 10 conteins a brief discus-
sion of Hohenemser'!s formula as well as the development

of formulas for the calculation of the rigid-blade bending
moments.,

Although wind-tunnel and flight tests have proved
the basic rotor theory rellable when applied to the rotor
as a whole, the theory contalins approxlimations that ralse
some doubts as to the order of accuracy in computing alr
forces at particular polnts in the rotor disk and, hence,
doubts as to the accuracy of bending moments computed by
any of the methods mentioned herein., These doubts can be
removed only by further tests in which blade bending is
measured under operating conditions.

COMPARISON OF BENDING MOMENTS COMPUTED BY
DIFFERENT METHODS

In order to compare the bending moments obtalned by
the several methods of analysls, calculations were made
for a rotor with three blades, each having the following
physlcal propartles:

Radlus, feet . .« o« ¢« ¢« o ¢ ¢ ¢ ¢ ¢ o o o a o o o « 12.5
Mess, Blug per foot ¢ o & o e o e ® & o o o o » 0.0519
Blade chord, Inches . « ¢« « + &« e o 8 o e s o o & 9%

Bending stiffness, EI, pound-feet2 c e e e s e . . TELO
Pitch setting (untwisted), degrees . « « ¢« ¢« ¢« « « « 10
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The rotor was assumed to be rotating at 370 rpm and to
have & forward veloclty of 100 miles per hour, which
corresponds to a tip-speed ratio p of 0.30. The ratio A
of axiel veloclity to tip speed was assumed to be -0.079;
the negative sign indicates flow downward through the
rotor disk.

The bending moments In the plane of flapping have
been computed for the rotor blade described in the
preceding paragraph by methods in each of the three
catagorlies of analysis mentioned in the preceding sectlion.
The moments computed for four azimuth angles (Y) are pre-
sented in figure 1. Inspectlon of these moment dlagrams
reveals that only a very small difference 1n computed
bending moment at any station exlsts between the values
glven by the exact method and this exact method modifiled
by neglecting the 1inertia forces due to blade bending.

The small magnlitude of this difference substantiates the
assumptlion, common to all approximate methods of analysis,
that these lnertia forcss are negliglible.

The method of analysls proposed by Clerva, which is
given in detall in appendix B, glves a maxlmum bending
moment for any azimuth angle that differs only slightly
from the meximum bending moment glven by the exact method
for the same azlimuth angle. The moment diagrams given by
the Clerva method are 1n close agreement with the moment
diagrams for the exact method except for the outer third
of the blade. In the outer third of the blade the bending
moments predicted by the Clerva formula decrease to zero
less rapldly than those predicted by the exact method, but
this fact 1s of little consequence because in this part
of the blade the moments are less than the maximum moment.

The method of analysis proposed by Hohenemser gives,
as shown in flgure 1, a bending moment dlagram at each
azlmuth angle that differs appreclably from those given
by the other methods. The computed moment 1s higher in
the inner part of the blade and lower in the outer part
as compared with the moment computed by the exact method.
At an ezimuth angle V¢ of 909, where the maximmum bending
moment approaches its smallest value, the Hohenemsser
method glves & maximum bending moment appreclably higher
than that given by the exact method. At = 270°, where
the maximum bending moment approaches 1its largest value,
the Hohenemser method gives a maximum bending moment
appreciably smaller than that given by the exact method.
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The labor required to evaluate the bendlng stress
by the approxlmate methods of Clerva and Hohenemser 1s
only a small fraction of the labor required by the more
exact methods. Of these two approximate methods, that of
Clerva l1s recommended for practlical stress analysis of
helicopter blades because the bending stresses obtalned
thereby are in good agreement with those glven by the exact
method.

In figure 2 are shown the results obtalned by the
exact analysis extended to include the effect of tip loss
by the method 1lntroduced by Wheatley (reference 3). The
tip-loss factor was assumed to be 0.97, whlich means that
the outer 3 percent of the blade 1s assumed to produce
no 1ift. The method of analysls used assumes zero moment
at the 0.97 point and does not consider bendlng between
this point and the tip. At all ezimuth angles, the
conslderation of tip loss reduces the maximum bending
moment consliderably and causes a reversal of bending near
the tlp. Because the assumptlion made concernling tip
effoct 1s only a crude approximation of the actual 1ift
distribution in this region, the calculatcd moments near
the tip may be very much 1In error. The large reduction
in the bending moment near the center, however, 1s
significant.

The bendlng stresses at each statlon 1n the rotor
blades of a helicopter vary between a maxlmum and a
minimim with each revolution of the rotor. For the par-
ticular blade analyzed, which was assumed to be of all-
metal aluminum-alloy construction with a section modulus
of 0,167 inch cubed and an effective cross-sectional area
of 0.56 square 1lnch, the total stress, which includes the
centrifugal tension and the superposed bending stress,
varied between the limits shown 1In flgure 3 for the upper
eand lower flbers at the different statlons along the
blade. Flgure 3 1s based on the results of the exact
bending-moment analysls, neglecting tip loss.

CONCLUSIONS

A comparison was made of rotor blade bending-moments
obtalned by several methods of analysls. The results for
the slngle numerical example studied lndicate that the
additional accuracy obtainable by the"exact" analysis, when
compared with the best of the approximate methods now in
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use, does not justify the extra labor involved in applying
the exact method.

Of the two spproximate methods studled, that of Clerva
gives the best over-all agreement with the more exact
eanalysls and 1s well sulted for the determination of
stresses 1n blades. The method proposed by Hohenemser,
although easler to apply thean the Clerva method, 1s less
deslirable because 1t glves maximum bending moments that
may differ by as much as one~quarter from those computed
by the exact method.

Consideration of tip loss results 1n a substantlal
reduction in maximum bending moments and should recelve
further attention in future studies of methods of blade
stress analysls.

T.angley Memorilal Aeronsutical Laboratory
Natlional Advisory Committee for Aeronautlecs
Langley Fleld, Va., Ju
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APPENDIX A
EXACT METHOD OF CALCULATING ROTOR-BLADE BENDING MOMENTS
Differential Equation of Blade Bending

The basic assumptions of the blade-bending analysis
referred to herein as the exact method are identical with
those used in reference l; for the development of the dif-
ferential equation except that a correction 1s added to
include the effect of tip loss. The correctlon for tip
loss follows the method developed by Wheatley in refer-
ence 3 in which the alr load on the outer few percent of
the blade 1s neglected.

Figure || shows the coordinate system used and the
nomenclature involved in defining the deviation of the
flexible blade from the rigld blade. The symbols used in
the analysis are defined in appendlx C. In figure 5 are
shown the forces and moments acting on each blade element.
A consideration of the equilibrium of the element in the
direction parallel to the longlitudinal axis of the blade
and in the direction normal to the blade ylelds the
following differential equation for the blade bending
deflections:

2Q 2 2
R R L S PN Je LT
mB2R2 ax2 - .4dx (2 g2 EI dr

If the blade mass 1s uniformly distributed frem hinge to
tip, the mass of the tip section, which 1s assumed to be
without ailr load, 1s

Q = mR(1 - B)
and the distance from the tip mass to the hinge 1is

Rq = 2(1 + B)

If these relatlonships are substituted in the second term
of the differcntial equation some simplification results
end the differentlial equation becomes

2 2
&E_K<_1__xz>d_z+2mgz+§;xdv=8“rt“§
dx B> dx2 dx 02 gt® EI dr
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If the tip loss 1s neglected, B reduces to unlty
and the -diffenential equation reduces to that given in
reference l. ' Coe e

Blade T.oadinrg

The term on the right-hand side of equation (Al)
renrosents the blade load gradlent, which 1s assumed
to be the seme as that on a rigld blade. The bl&dde
loadlng can be avaluated by means of the rotor theory
glven 1n references 1 end 3. In the present analyslis the
blades are assumed to be bullt with constant chord and
without twlet and the effect of periodic twlst of the
blades 1s neglocted. The effect of both tyves of twilst
can be consldered by the methods of refoerences 2 and 3,

If the lnstantaneous flapping angle of the blades 1s
represented by the equatilon

f = 8g - 8] cos ¥ - by sin Y (A2)

the veloclty components causing aerodynamic forces on

the blades are
\

Up = xBRQ + pROQ sin
Up = ARQY - xBRQ(al sin ¢ - by cos \L') Y 23)
-uRQ(ap - a1 ccs ¥ - by sin w)cos ¥
7/
The load gradlent 1s then glven by
as 1
_ Er— = ECPQ(UTUP + BUTZ) - mBRQaaox - mg (AL)

Introduction of the relatlonships given 1n equa=-
tions (A3) into equation (Alj), expanding, and neglecting
higher harmonlce glves for the load gredlent
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2a,m 1 2mg
paR02 {[eBzxz + B(X N cpgn)x + —euz = ]

I
NAH

[-alexZ + 28uBx + ph + ﬁgaall sin y

[blexZ - auBx + ﬁp.zbl} cos w} (A5)

Flapplng Coefficlents

The flapping coefficlents a,, &3, and by, which

define the blade motlon glven in squation (A2), are deter-
mined from the conditlon that the moment at the flapping
hinge 1s zero for all azimvuth angles. The coefficlents
ares:

8g = Y I%GBE (B2 + p.2) 3B3)\.] ’)21
1l

_ lu(le + 31 \
3(282 - u?)

al (A6)

- . BuBag

TSR D) /

where
= 1np2R2
My g(QER + amB R>
_ 1
I = QH?RQ + gmBaRB
y - cpaRd

I
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Solution of the Differentlal Equation of Blade Bending

The method of solution of the differentiai- equation. .
follows that gilven in reference l.. The blade deflectlons
are assumed to be expressible 1n the form

¥y=7y1 +Jp 8in ¥ + y3 cos ¥ (AT)

in which y,, 7>, and y; are functions of the dlstance

along the blede span. ~Substitution of equation (A7) and
(A5) in the dilffsrentiel equation (Al) ylelds ths following
differential eguations for the functlons y1, ¥, and yz.

i 2 6
d::]_ - K[é + 2QR.Q'> -XZ] da J1 + 2dey1 - cpth'R (22 [eBzxa

mB2R2 ax2 dx 2ET
_ 2aonm 1fp,2 - _lme
* <}‘ cper )& T zé“ cpm292>] (48)
dh'YE Eg\ ] 2-‘/2 ope.BL’R F 2_2
dx).l. K [1 mBERQ/ d.x 2Ky2 -&]_B X
+ 26uBx + (p.)\. + i-|.|.2a]_>] (A9)

A

- BguBx + f'—l.p.ab]] (a10)

The four boundary conditions that the funetlons yy, yo,
and vz mist setlsfy are : At the hinge the deflection
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eand moment are zero, and at radius BR the moment 1s zero
and the shear is that required to meintaln equilibrium of
the tip mass Q. The last-mentioned boundary condition,
at x = 1.0, can be exnressed 1ln the following form:

d3y1 dyq R
= + + ==
b= = == + Wa, R«:ﬁ?
d’yo dy
A————_‘-- —= —d--an - 72
d::? L]
<%
d'yz 4y
A2 = -t - 73
dx? o
where
EI
A= —
Q2 82R2R,

The differential equations for yi1, yo, and y

be solvad appnroximetely by the method of "collocation'".
(See reference li.} The method of collocation consists
essentlally of expressing the solution as a linear com-
bination of functions that satisfies the boundeary condl-
tlons indenendently of the value of the coefficlent
assoclated with each functlion. The combination of
functions 1s substituted into the differential equation,
and the ccefliclente are so adlusted that the resultant
expression satisfles the differentlal equation at as
many poilnts as there are functions,

When the tip effect 1ls considered the followlng
set of functlons can be used:

= —(ﬂ!{ao + BRG xp+e _ £_+_.].'xp+5

x-i-% > 3

~fte + 1(p +2)8 + 1=
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y2

0pp (P2 - Bt 143
P+ 3

Y3 =

|
Q
\N
/'\
'd
+*
[\V]
'd L]
+ +
Wil e
'd
+
L

If the tilp effect 1s neglected, the form of the
solutlion for yy; 1s

s

2 + 1
F1 = G + clpép+1 .22 o2 P+ 1)

p+2 (p +2)(p + 3)

ﬁl\m/
ot

The form of solution for y, and T3 remalns as
before.
Numerlcal Example
A numerilcal example 1s presented with tip loss
neglected, for a blade with the following propertles
end operating conditlons:
R = 12.5 feet
c = 9% inches
m = 0.0519 slug per foot
a = 5.73
EI = 7640 pound-feet?
{1 = 38.8 radians per second
= 0.300
-0.079
= 10° = 0.175 radian

]

= 0.00230 slug per cuble foot

13

xp+§>
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If the tip loss 1s nseglected,
B8=1.0and @ = 0

Equations (A6) give the followlng values for the
flapping coefficients:

a, = 0.077922
a] = 0.096963

by = 0.029827

The factors ¥y and K have the following values:
Y = 7.5385
K = 124.83

If six functions are chosen for the solution to the
differential equation for yj, the form of the equation 1s

¥y = Cy31x + Cyp é{a - x’-'- + %xS) + 013 (x’-‘- - -gxs + %x{’)

+Cy), x2 - %kG + %%x7) + C15 (x6 - %$x7 + %g¥8>

T - 2x8 + 159
+ G186 (x 21 + 127 (A1l)

When this function 1s substituted in the differential
equation (A8), the equation 1s setisfied at the polnts
x =0, 0.2, 0.4, 0.6, 0.8, and 1.0 if

€17 = ~0.171 foot €yl = =0.919 foot
Ci12 = 0.133 foot C15 = 0.569 foot
C13 = 1.197 feet C16 = 0.503 foot
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Substitution of the coefflclents in equation (All)
ylelds

¥y = =0.1T1x + 0.133x3 + 1.064xlt - 2.315x5 + 2.273x6
-0.748x7 -0.449x8 + 0.293x9

The corresponding bending moments are obtalned by

differentiating twlce and multiplying by E%, whlch glves

R
My = 48.9(0.795x + 12.77x2 - L6.30x3 + 68.18xl

-31.40x5 - 25.17x6 + 21.12x7)

By & simllar process the rasults for M, and M5 corre-
sponding to the deflectlons yp and yz are

= 48.9(5.16x - 42.19x2 + 136.1x3 - 239.9xl
+ 232,355 - 109.2x6 + 17.8x7)

= 148.9(0.335x + 1.32x2 - 5.08x3 + 5.93xl
+ 1.59x5 = 9.18x6 + 5.09x7)

The general expresslion for the bending moments 1s
M =M + M sln ¥ + Mz cos ¥

At a distence from the flapping hinge of x = 0.6 the
bending moment 1s

= L3.2 - 15.9 sin ¥ + 9.0 cos V¥




16 NACA ARR No. L5E23
The minimum bending moment at the station x = 0.6
occurs when ¥ = 120° and 1=
M=L43.2 - 13.8 - 4.5 = 24.9 pound-feet

The maxlmm bending moment at the station x = 0.6
occurs when ¥ = 300° and is

M=L43.2 +13.8 + L.5 = 61.5 pound-feet
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APPENDIX B
APPROXTMATE METHODS OF GALGULATING ROTOR-
BLADE BENDING MOMENTS
Clerva Method

The Clerva formule for the bendling moment in a
rotor blade, given in reference 6, is

Mxy=M;
Mn + Mp

where M, 1s the moment in a rigid blade and My 1s a
fictlitious moment obtained by multiplying the curvature

of a perfectly flexible blade by the actual blade bending
stiffness EI.

If the blade 1s assumed rigid and tip loss 1s
neglected, the rigld-blade bending moment obtalned by

integrating the moment of the load gradlent glven in
equation (AS5) is

Mp = -2]=cpaRhQ2 [ecJc +6 - éi%sx+(%eu2 - —6J§\)A1J
>Ax] sin v

+ blcx - p.aon ,-I- Ax] cos \'I (BZ)

+ -alcx + 20uBy + <§h +

in which .\\

Ax=£ll/:tdxdx=§(l-2x+x2)
Ll .l:l xdxdx:-z-(2-3x+x3) >  (B3)
cx=£1[x2dxdx=-113(3-hx+xl+)

A

By
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If the blade loading for the perfectly flexible
blade 18 assumed equal to that of the rigld blade the
fictitious moment existing in the blade 1s

e.,.éepz-_l&&

Mf = E:I.:I e - 2 YRQ2
9R (1 + x)2
] ~a1 + ialua + 3
+ |-a - sin v
(1 + x)2
by + E:b]_p,z
+ |by - == cos (B4)
1 (1+x2

The numerlcal values of My and M, can then be

combined to give the actual blade bending moment according
to equation (Bl).

In reference 9 Hohenemser developed the followlng
formula for the moment in a blade that has a uniform
distributlon of both blade mass and blade bending
stiffness:

Mp
M= - s (B5)
RSP,
0.052—
1 + 0% p—

in which M, 1s the rigld-blade bending moment and P,
1s the centrifugal tension at the flapping hinge.

For a blade of uniform mass distribution,

P, = =mRZ

N =

Substitution of the value for P, 1in equation (B5)
reduces this equation to

- My
1 + 0.052K
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in whilch

Y] w N

e e _ mgl?
2EI
Numerlcal Examples
The bending moments 1n the same blade and for the
same operating conditions as were consldered in appendlx A
are calculated by both Clerva's and Hohenemser's method
for x = 0.6 and Y = 120° and 300°,.

When the baslc data from appendlx A are substltuted
in equation (B2) the following result 1s obtained:
M, = 192,000 [(0.17500x - 0.1410B, + 0.00651A,)
- (0.0970C, - 0.1050B, + 0.0215Ax) sin y

+ (0.0298cx - 0.0234Bx + 0.00067A5) cos q;] (B6)

For x = 0.6, equations (B3) gilve

Ay = 0.0800
By = 0.0693
Cx = 0.0608

Substitution of- these values of Ay, Bx, and Cy in

equation (B6) glves the Tollowing expression for the
rigid-blade moment at x = 0.6:

Mp = 265 - 65 sin ¥ + L8 cos v

The perfectly flexlble blade bending moment 1ls
obtained from equation (H}) and is

Mp = 512 [0.1750 - -—(’-:—19&—] + [-0.0970 + —o—'ﬁi]sin v

(1 + x)2 (1 + x)°

+ [0.0298 - Mﬁs—]cos i
(1 + x)2
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At x = 0.6,
Me = 50.7 - 7.4 sin ¢ + 8.9 cos ¥

At ¢ = 120° (the approximate position for minimum bending
moment),

M, = 265 - 56 - 2} = 185 pound-feet
My = 50.7 - 15.1 - L.} = 31.2 pound-feet
Therefore, the Cierva method (see equatlon (Bl))

glves for the bending moment M at the azlmuth positlon
v = 120°,

M= 185 x 31.2 - 26.7 pound-feet
135 + 31

Similarly, the Clerva methcd gives for W = 300°
M = 58.] pound-feet
When Hohenemser's metkod is used, at ¢ = 1209,

1
1 + (0.052 x 12).8)

M = 185 x 2li.7 pound-feet

and simllerly, st ¥ = 3000,

1

)

M = 345 x 16.0 pound-feet

1 + (0.052 x 1211.8)
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APPENDIX C
- SYMBOLS

—rr s ) e

dimensionless coefficlent (EI/QBBRaﬁQQ%) ‘
slope of 1ift curve

constant term in Fourler serles that
expresses f

coefficient of cos ¥ in expression for p
coefficlent of sin ¥ 1In expression for B

tlp-loss factor (blade elements outboard of
radius BR are assumed to have no 1lift)

coefflclents In equations for y;, y2, and Y3
blade chord (constant)

flexural stiffness of blade

acceleratlion due to gravity

mass moment of inertia of one rotor blade
about horlzontal hilnge

dimensionless coefficient (mBh'RL'QZ/ZEI)
aerodynamic 1ift on blade element at radius r
boending moment 1n blade at radius r

moments corresponding to the deflectlon
functions y,, yo, and V3

flexlble-blade bending moment as deflned 1n
eppendix B

bending moment in blade at radius r (blade
assumed to be a rigid body)

welght moment of blade ebout horizontal
hinge
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Y1 Yo, Y}

NACA ARR No. L5SE23
mass of blade per unit length between
hinge and radius BR
an arbitrary Integer

any integer greater than zero end less than
or equal to n

tension in blade at radius r
tenslon In bl=de at horizontal hinge

mass of blade tip between radius BR &nd
radlius R

blade radlus

diastence from center of rotatlion tec center
of gravity of mass @Q

radlus of blade element

shear In the blade st radlius r

time

veloclity component at blade element perpen-
diculer to blade span exis and parallel
to rotor disk

velocity component at blaede element perpen-
dicular both to blade span and to TUp

ratlo of blade-element radius to B

deflectlon of blade element at radius r,
referred to rigld-blade positilon

deflectlicen functlons entering 1nto the
gensral equation for ¥y

blade flapning angle
angle between plane peroendicular to axls of

rotation and llne connectling horizontal
hinge with blade element at radius r
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slope of tangent to blade at radius r,
referred to plane perpendicular to axils
of rotation "

blade azimuth angle, messured in direction
of rotetion from down-wind position

blade pltch angle
angular veloclty of rotor

ratlo of commonent of forward speed in plane
perpendicular to axis of rotation to (R

ratio of axial inflow velocity through rctor
to QR

mass constant of rotor blade <%9?5&
1

alr denslty
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Figs., 4,5 : NACA ARR No. L5E23
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Figure 4.— Geometry of deflected blade .
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